Journal of Organometallic Chemistry, 286 (1985) 115–120 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

METALS IN ORGANIC SYNTHESES

XI *. ³¹P NMR AND REACTIVITY STUDIES ON THE SYSTEM trans-[PtCl(CO-n-hexyl)(PPh₃)₂]/SnCl₂, AN ACTIVE INTERMEDIATE IN THE CATALYTIC HYDROFORMYLATION OF 1-HEXENE

A. SCRIVANTI,

Centro di Chimica Metallorganica del C.N.R., Via Marzolo 9, Padova (Italy)

G. CAVINATO, L. TONIOLO*

Istituto di Chimica Generale e Inorganica, Via Loredan 4, University of Padova (Italy)

and C. BOTTEGHI

Dipartimento di Chimica, Facoltà di Chimica Industriale, University of Venezia (1taly)

(Received October 10th, 1984)

Summary

The system *trans*-[PtCl(CO-n-hexyl)(PPh₃)₂]/SnCl₂ has been investigated by ³¹P NMR spectroscopy. In CD₂Cl₂ or acetone- d_6 solutions two species (in equilibrium with the starting Pt complex) are observed at low temperature: one set of signals is attributed to the complex *trans*-[Pt(SnCl₃)(CO-n-hexyl)(PPh₃)₂]; the other set does not show Sn-P coupling and it is tentatively attributed to a complex having chloride bridging the Pt and Sn metal centers. Formation of the complex *trans*-[Pt(SnCl₃)(CO-n-hexyl)(PPh₃)₂] is prevented when ethanol is added to the CD₂Cl₂ or acetone- d_6 solutions. Treatment of the CD₂Cl₂ or acetone- d_6 solutions with molecular hydrogen gives n-heptanal and hydridoplatinum species; this reaction does not occur in the presence of ethanol, where only a complex having chloride bridging the Pt and Sn metal centers seems to be present.

These results are discussed in connection with the catalytic cycle of olefin hydroformylation promoted by the $[PtCl_2(PPh_3)_2]/SnCl_2$ system.

Introduction

The ligand-stabilized platinum(II) Group IVA metal halides system displays a high catalytic activity and selectivity in olefin hydroformylation comparable with

0022-328X/85/\$03.30 © 1985 Elsevier Sequoia S.A.

^{*} For Part X see ref. 7.

that of the well-known rhodium complexes [1–4]. The details of the reaction mechanism with these platinum(II) catalytic precursors are not yet well understood, especially as far as the role of SnCl_2 in the catalytic cycle is concerned. It has been found that olefin hydroformylation catalyzed by the platinum(II)-phosphine ligand/SnCl₂ system is strongly solvent dependent [1–7]. For instance, in methyl ethyl ketone the hydroformylation of propene proceeds smoothly at 70°C and *P* 100 atm (CO/H₂ = 1/1) giving high yields of n-butanal; under these conditions *trans*-[Pt(SnCl₃)(CO-n-propyl)(PPh₃)₂], which contains a Pt–Sn bond, has been isolated [5]. In ethanol solutions, under the same conditions, no catalysis was observed; and *trans*-[PtCl(CO-n-propyl)(PPh₃)₂] and *trans*-[PtCl(CO-n-hexyl)(PPh₃)₂] were isolated during hydroformylation of propene or 1-hexene [5–7]. These complexes can be obtained even in the absence of SnCl₂ [5–7].

These results prove that the presence of $SnCl_2$ is not necessary for formation of the σ -acyl-platinum(II) complexes. However, these complexes display high catalytic activity only in the presence of $SnCl_2$, in solvents of moderate or low polarity such as ketones or benzene [5–7].

In the present paper we report the results of ³¹P NMR investigations of (i) the interaction of *trans*-[PtCl(CO-n-hexyl)(PPh₃)₂] with SnCl₂ in acetone- d_6 , CD₂Cl₂ and ethanol; and, (ii) the reactions of the above systems with molecular hydrogen. The aim of the study was to ascertain the role played by SnCl₂ in the step involving hydrogenolysis of the σ -acyl-platinum(II) complex to give the final aldehyde.

Results and discussion

³¹P NMR of trans-[PtCl(CO-n-hexyl)(PPh₃)₂] (1)

First, we studied the behaviour of the complex *trans*-[PtCl(CO-n-hexyl)(PPh₃)₂] (1) in both acetone and dichloromethane solutions, in which the hydroformylation of 1-hexene can be successfully carried out. In CD₂Cl₂, at 303 K, the ³¹P {¹H} NMR spectrum of 1 displays a single resonance at 21.0 ppm flanked by ¹⁹⁵Pt satellites (¹J(Pt-P) 3537 Hz); this signal is moderately affected by temperature: at 203 K it is observed at 21.4 ppm (¹J(Pt-P) 3467 Hz). In acetone- d_6 , at 303 K, the signal appears at 20.0 ppm (¹J(Pt-P) 3571 Hz); the poor solubility of complex 1 in acetone prevented recording of the spectrum at lower temperature.

These results indicate that the *trans*-phosphine configuration of complex 1 present in the solid state [6] is retained in solution; spectral changes are probably due to solvent and/or temperature effects.

³¹P NMR spectra of the system $1 / SnCl_2$ in CD_2Cl_2

Addition of an equivalent amount of $SnCl_2$ to 1, in CD_2Cl_2 gives an orange solution which shows a featureless ³¹P NMR spectrum at 303 K. Upon cooling to 203 K the spectrum resolves into two distinct and equivalent signals at 17.6 ppm (¹J(Pt-P) 2940 Hz) and 15.7 ppm (¹J(Pt-P) 3220, ²J(P-Sn) 283,295 Hz) indicated as A and B, respectively, in Fig. 1.

Signal *B* can be assigned to the complex *trans*-[Pt(SnCl₃)(CO-n-hexyl)(PPh₃)₂] (2): the values of the P-Sn couplings prove the presence of a Pt-SnCl₃ bond in a *cis* position relative to two equivalent PPh₃ ligands mutually in a *trans* disposition in the coordination plane [8-10]. The breadth of signal *A* indicates that the relevant chemical species are involved in a relatively fast equilibrium.

Fig. 1. ³¹P NMR spectrum of *trans*-[PtCl(CO-n-hexyl)(PPh₃)₂]/SnCl₂ (Sn/Pt = 1/1) in CD₂Cl₂ at 203 K.

The ³¹P NMR spectra recorded in the presence of variable amounts of $SnCl_2$ (Sn/Pt ratios ranging from 0.3/1 to 1.2/1) show that peak *B* maintains its spectral features, whereas peak *A* moves from 21.1 ppm (¹J(Pt-P) 3465 Hz) at Sn/Pt ratio 0.3/1 to 17.0 ppm (¹J(Pt-P) 2935 Hz) at Sn/Pt ratio 1.2/1. The increase in the Sn/Pt ratio also results in a substantial enhancement of the intensity of signal *B* with respect to signal *A*. At the lowest Sn/Pt ratio peak *A* is close to the signal corresponding to the pure complex 1. Thus signal *A* may be interpreted as the average resonance arising from a relatively fast equilibrium involving complex 1 and complex 3, arising from the interaction of complex 1 with SnCl₂.

The observed ³¹P NMR spectral behaviour can be interpreted in terms of the following scheme:

$$trans-\left[\operatorname{PtCl}(\operatorname{CO-n-hexyl})(\operatorname{PPh}_{3})_{2}\right] + \operatorname{SnCl}_{2}$$

$$(1)$$

$$\downarrow\uparrow$$

$$trans-\left[\operatorname{Pt}(\operatorname{SnCl}_{3})(\operatorname{CO-n-hexyl})(\operatorname{PPh}_{3})_{2}\right]$$

$$(2)$$

Species 3 is in rapid equilibrium with complex 1, whereas equilibria involving complex 2 are frozen out at 203 K. Complex 2 may be formed either via complex 3 or by direct attack of $SnCl_2$ on complex 1. It is interesting to observe that the closely related complex *trans*-[Pt($SnCl_3$)(CO-n-propyl)(PPh_3)_2] has been isolated during propene hydroformylation; in that case the presence of a Pt-SnCl₃ bond was suggested on the basis of IR data [5].

The following experimental observations affords other information on the nature of complex 3: (i) the solutions containing 1 and SnCl₂ are non-conducting; (ii) the ³¹P NMR spectrum of the cationic complex *trans*-[(solv)Pt(CO-n-hexyl)(PPh₃)₂]⁺ (4) (solv = CD₂Cl₂), independently prepared, shows signals (see Table 1) different from those of A and B. It is thus reasonable to propose structures of types I or II for complex 3.

Structures of types I and II have been found by X-ray diffraction of the complexes $[Ag(SnCl_3)(PP)]$ (PP = 2,11-bis(diphenylphosphinomethyl)-benzo[c]-phenanthrene [11]) and $[MoCl(SnCl_2CH_3)(2,2-bipyridyl)]$ [12]. Our results do not allow a definitive assignment for species **3**, since the equilibria cannot be frozen out even at 203 K.

It is noteworthy that in the case of the closely related complex *trans*- $[Pt(SnCl_3)(CO-phenyl)(PPh_3)_2]$ in CDCl₃ solution a complex of type **2** has been observed, along with another species displaying no P--Sn couplings in the low temperature limiting spectrum; this latter species was tentatively formulated as an ion pair complex [13].

³¹P NMR of the system $1 / SnCl_2$ in acetone

The equilibria depicted in the scheme are strongly affected by the nature of the solvent. In acetone- d_6 at 203 K, the ³¹P NMR of the system $1/SnCl_2$ (Pt/Sn = 1/1)

TABLE 1

 31 P NMR DATA (chemical shifts are in ppm (positive values downfield referred to external 85% H₃PO₄ at room temperature). Coupling constants are in Hz (±3))

	In CD ₂ Cl ₂			In Acetone-d ₆	
	$\delta(P)$	$^{1}J(Pt-P)$	$^{2}J(Sn-P)$	$\delta(P)$	J(Pt-P)
trans-[PtCl(CO-n-hexyl)(PPh ₃) ₂] " (1)	21.0	3537		20.0	3571
trans-[PtCl(CO-n-hexyl)(PPh ₃) ₂] ^{<i>b</i>} (1)	21.4	3467			
trans- $[Pt(SnCl_3)(CO-n-hexyl)(PPh_3)_2]^{b}$ (2)	15.7 °	3220	283,295	15.1 °	3251
trans-[PtCl(CO-n-hexyl)(PPh ₃) ₂ /SnCl ₂] ^b (3)	17.6 °	2940		16.0 °	3103
trans- $[(solv)Pt(CO-n-hexyl)(PPh_3)_2]^+ a,d$ (4)	23.1	3652			

^{*a*} Spectra measured at r.t. (303 K). ^{*b*} At 203 K. ^{*c*} Pt/Sn ratio 1/1. ^{*d*} Solv = CD₂Cl₂.

shows two signals, A' and B', having the following features: A' = broad singlet (intensity 4) δ 16.0 ppm (¹J(Pt-P) 3103 Hz); B' = singlet (intensity 1) δ 15.1 ppm (¹J(Pt-P) 3251 Hz); both signals show no phosphorus-tin couplings. The closeness of δ and J values of the B (Fig. 1) and B' signals suggests that signal B' may be attributed to complex 2, even though the P-Sn couplings can not be observed. The broad resonance A' is tentatively attributed to complex 3. The presence of an excess of SnCl₂ (Pt/Sn ratio up to 1/5) causes negligible changes in the spectrum.

The solvent effect on the relative amounts of complexes 2 and 3 in dichloromethane and acetone is noteworthy. A strong solvent effect has been observed also for the catalytic activity, which is high in a ketone and markedly depressed in an alkanol. This prompted us to study the effect of added ethanol on the spectral behaviour of the system $1/SnCl_2$ in acetone and dichloromethane solutions.

In acetone- d_6 at 203 K, at relatively low ethanol concentrations (Pt/EtOH molar ratio up to 1/50), δ and J values for resonance B' remain almost unchanged; for resonance A' the signals shift upfield and the ¹J(Pt-P) value increases; moreover the relative intensity of the signals A' and B' increases from 4/1 to 10/1. At higher EtOH concentrations (Pt/EtOH ~ 1/800, acetone/EtOH ~ 2/1) resonance B' is no longer observable, while resonance A' appears as a singlet at 16.7 ppm with ¹J(Pt-P) 3290 Hz. The same behaviour is observed in CD₂Cl₂ solutions. These results suggest that EtOH prevents the formation of the complex trans-[Pt(SnCl₃)(CO-nhexyl)(PPh₃)₂] and that only species 1 and 3, in equilibrium, are present in this solvent.

Reactions with hydrogen

In CD_2Cl_2 or acetone- d_6 solutions the system $1/SnCl_2$ reacts with molecular hydrogen under ambient conditions. In both solvents, n-heptanal is formed overnight in practically quantitative yield. The fate of complex 1, was investigated by ¹H and ³¹P NMR. The spectra of the CD_2Cl_2 solution show that resonances A and B have disappeared and that the major species present is *trans*-[PtH(SnCl_3)(PPh_3)₂] [14a]; a minor amount of other hydrido species can be recognized from a complex pattern of resonances in the ³¹P and ¹H (hydride region) NMR spectra. In acetone only this complex pattern is recognizable: these signals are superimposable on those of the system *trans*-[PtHCl(PPh_3)₂]/SnCl₂ which was independently studied in acetone [14b].

It is noteworthy that the hydrogenolysis of the σ -acyl-Pt bond is quenched by ethanol. The ³¹P NMR spectra of CD₂Cl₂/ethanol or acetone/ethanol solutions of system $1/SnCl_2$ show no variations after hydrogen treatment overnight.

Conclusions

The most remarkable result of our investigation is the detection of species 3 in equilibrium with complexes 1 and 2. The concentration of species 3 is comparable with that of 2 in CD_2Cl_2 and is higher in acetone; in acetone/ethanol species 3 is practically the only complex present.

In acetone/ethanol hydrogenolysis of the σ -acyl-Pt^{II} bond of species 3 does not occur under ambient conditions. In contrast, species 2, which contains a Pt-SnCl₃ bond, undergoes hydrogenolysis, even under such conditions to give the corresponding aldehyde.

Since ethanol inhibits the formation of complex 2 and the catalytic hydroformyla-

tion is strongly depressed in this alcohol [5–7] it seems reasonable to assume that only a species of type **2** is directly involved in the catalysis. In addition, since complex **1** can be synthesized from $[PtCl_2(PPh_3)_2]$, 1-hexene, and hydrogen even in the absence of $SnCl_2$, and since $SnCl_2$ is necessary in order to observe catalysis, our data give further support to the suggestion that a $Pt-SnCl_3$ bond plays a key role in the last steps of the catalytic cycle [5–7].

More experimental work, more closely simulating "oxo" conditions, is needed to gain a deeper insight into the nature and activity of the Pt-Sn system.

Experimental

Complex 1 and *trans*-[PtHCl(PPh₃)₂] were prepared as described in the literature [6,15]. SnCl₂ \cdot 2H₂O was dehydrated before use [16].

The ¹H and ³¹P {¹H} NMR spectra were recorded on a Varian FT 80 A spectrometer at 79.542 and 32.203 MHz respectively. The solutions for the NMR experiments were prepared by stirring complex 1 with the appropriate amount of $SnCl_2$ under argon.

Complex 4 was prepared in situ by adding an equimolecular amount of $AgBF_4$ to complex 1 dissolved in CD_2Cl_2 .

The reactions with hydrogen were performed by keeping the $1/SnCl_2$ solutions under this gas overnight.

References

1 I. Schwager and J.F. Knifton, J. Catal., 45 (1976) 256,

- 2 C.Y. Hsu and M. Orchin, J. Am. Chem. Soc., 97 (1975) 3533.
- 3 Y. Kawabata, T. Hayashi and I. Ogata, J. Chem. Soc., Chem. Commun., (1979) 462.
- 4 L.J. Kehoe and R.A. Schell, J. Org. Chem., 35 (1970) 2846.
- 5 R. Bardi, A.M. Piazzesi, P. Cavoli, G. Cavinato and L. Toniolo, J. Organomet. Chem., 224 (1982) 407.
- 6 R. Bardi, A.M. Piazzesi, A. Del Prà, G. Cavinato and L. Toniolo, J. Organomet. Chem., 234 (1982) 107.
- 7 G. Cavinato and L. Toniolo, J. Organomet. Chem., 241 (1983) 275.
- 8 P.S. Pregosin and S.N. Sze, Helv. Chim. Acta, 61 (1978) 1848.
- 9 B.R. Koch, G.V. Fazarkeley and E. Dijkstra, Inorg. Chim. Acta, 45 (1980) L51.
- 10 P.S. Pregosin and H. Rüegger, Inorg. Chim. Acta, 86 (1984) 55.
- 11 M. Barrow, H.B. Bürgi, M. Camalli, F. Caruso, E. Fischer, L.M. Venanzi and L. Zambonelli, Inorg. Chem., 22 (1983) 2356.
- 12 M. Elder and D. Hall, Inorg. Chem., 8 (1969) 1268.
- 13 G.K. Anderson, H.C. Clark, J.A. Davies, Organometallics, 1 (1982) 64.
- 14 (a) K.A. Ostoja Starzewski, H. Rüegger and P.S. Pregosin, Inorg. Chim. Acta, 36 (1979) L445; (b) V.I. Bogdashkima, A.B. Permin, V.S. Petrosyan, V.I. Pol'shakov and O.A. Reutov, Bull. Acad. Sciences USSR, 31 (1982) 917.
- 15 G. Cavinato and L. Toniolo, Inorg. Chim. Acta, 52 (1981) 39.
- 16 Organikum, Deutscher Verlag der Wissenschaften, Berlin 1969, p. 697.